

WaveAce[™] 1000 and 2000 Oscilloscopes

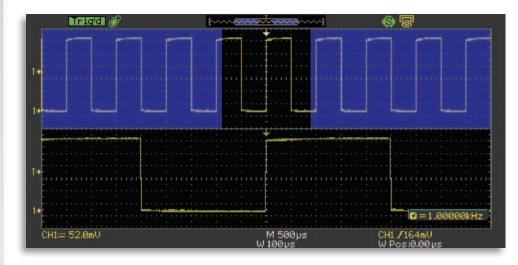
40 MHz-300 MHz

Key Features

- Sample rates up to 2 GS/s
- 1 Mpts/ch memory,
 2 Mpts interleaved
- 7" color display on all models
- 32 automatic measurements
- Multi-language user interface and context sensitive help
- Large internal waveform and setup storage
- USB connections for printers, memory sticks and PC remote control

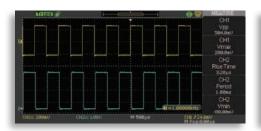
A good oscilloscope should simplify how you work and shorten the time it takes to find and debug problems. The WaveAce[™] combines long memory, a color display, extensive measurement capabilities, advanced triggering and excellent connectivity to improve troubleshooting and shorten debug time. With bandwidths from 40 MHz to 300 MHz, sample rates up to 2 GS/s and waveform memory up to 1 Mpts/Ch (2 Mpts interleaved) the WaveAce exceeds all expectations of a small affordable oscilloscope.

Measure and Debug Tools


With 32 automatic measurements standard, the WaveAce simplifies how measurements are made. The large 7" widescreen display can show up to five measurements without crowding the waveform display or show all 32 at once with the measurement dashboard. A wide range of advanced timing parameters provide insight to the relationship between signals on two different channels. WaveAce oscilloscopes provide five math functions for additional analysis including Add, Subtract, Multiply, Divide and FFT. The FFT can be viewed using four different windows and two different vertical scales for an insightful view of the freguency domain. Built-in Pass/Fail Mask testing allows for quick identification of problems and highlights when they have occurred.

Easy to Use for Faster Debug

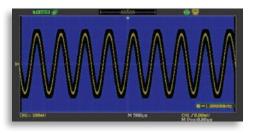
The high performance and large feature set of the WaveAce is controlled by an intuitive user interface with 11 different languages and a streamlined front panel. All important controls and menus are accessed from the front panel with a single button press. All position and offsets can be reset by simply pressing the knob, pressing the V/Div knob will switch between fixed and variable gain and pressing the T/div knob will togale between zoom modes. Buttons on the front panel that open and close menus or switch modes, are backlit so that the mode of operation is easily visible to the user.


www.valuetronics.com

THE TOOLS AND FEATURES FOR ALL YOUR DEBUG NEEDS

Long Capture and Zoom

Small, portable oscilloscopes often suffer from short capture time due to the small waveform memory. The WaveAce has up to 1 Mpts/ch of memory which is two to three times larger than competitive products. More memory results in longer capture times showing more waveform detail with each trigger. Activate the built-in zoom function to take a closer look at the details.


Automatic Measurements

The WaveAce provides two display modes for viewing any of the 32 automatic mesurements. Five measurements can be displayed at the same time without crowding the waveform, or all 32 measurements can be displayed using the dashboard.

Waveform Math

The WaveAce provides five math functions including Add, Subtract, Multiply, Divide and FFT. The FFT capability includes the choices of four windows and two different vertical scales.

Pass/Fail Test

With built-in Pass/Fail Mask testing the WaveAce can quickly identify problems and let you know when they occur. A history of the P/F results can be displayed on the screen.

Digital Filter

Digital filtering is available on each channel of the WaveAce. The Low-Pass, High-Pass, Band-Pass and Band-Stop filters allow you to isolate only the frequencies you want to see.

Waveform Sequence Recorder

Capture and replay a sequence of up to 2,500 waveforms to isolate that runt or glitch which is causing problems in your system.

Advanced Triggering

Edge triggering is not always the best choice for every signal. Beyond the basic edge trigger is a set of trigger capabilities which include Pulse Width, Video and Slope (Rise Time) triggers.

Connectivity

The WaveAce provides a USB host port on the front panel for saving screen images, waveforms and setups to a memory stick. A rear panel USB device port allows for connection to a PC or printer. Connecting and communicating with a PC is simplified with WaveStudio software providing full access to the oscilloscope's display, measurements, and waveform data.

Large Internal Storage

Saving and recalling waveforms and setups from internal memory can save a lot of time during test and debug. The WaveAce can save up to 20 waveforms, 20 setups and two reference waveforms to the internal memory.

Acquisition Modes

Different applications call for different acquisition modes. The WaveAce offers Real Time, Equivalent Time, Peak Detect and Averaging modes to ensure that any waveform can be captured and displayed.

WaveStation Integration

With 5 basic signal types, and over 40 built-in arbitrary waveforms Teledyne LeCroy's WaveStation is a versatile waveform generator. A variety of modulation schemes, intuitive waveform editing software and remote control capabilities, enable versatile waveform generation of waveforms up to 50 MHz. The 3.5" display and simple user interface make it easy to generate a wide range of waveforms. Additionally, connecting a WaveAce oscilloscope to the same PC enables transferring real world signals from the WaveAce to the WaveStation.

LogicStudio 16 Integration

The WaveAce can be paired with Teledyne LeCroy's LogicStudio 16 to turn your PC into a mixed signal oscilloscope with tools for capturing, viewing and measuring analog, digital and serial signals in one place. LogicStudio offers 16 channels, 100 MHz and up to 1 GS/s logic analysis with I²C, SPI and UART triggering and decoding which can all be displayed alongside the analog waveforms captured on WaveAce. When only digital debug is needed disconnect the WaveAce and use LogicStudio as a standalone logic analyzer.

www.valuetronics.com

1. Fast Power Up

The WaveAce turns on and is ready for use in under 10 seconds.

2. Display

All WaveAce models have a 7" widescreen color display.

3. Connectivity

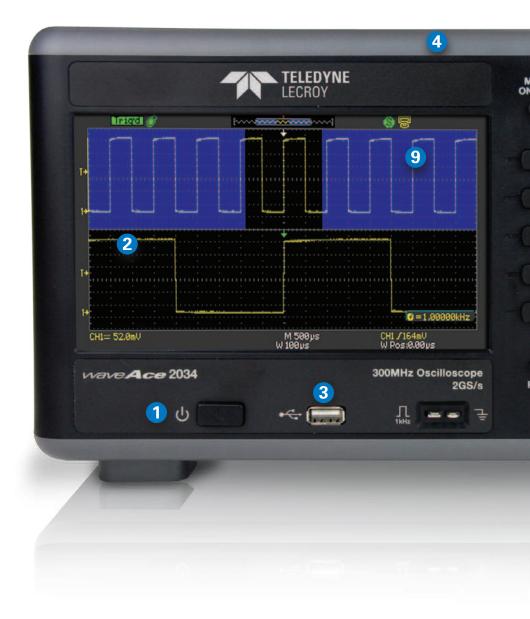
Saving waveforms, screenshots and setups is easy with the front panel USB port for use with a memory stick.

4. Portability

The small compact form factor is lightweight and only 5" deep.

5. Communication

Rear panel USB port enables direct remote control from a PC. The USB port also allows for connecting to a printer.



6. Intensity

Waveform intensity can be quickly adjusted by rotating this knob, a meter on the display will appear and show the current setting.

7. Individual Vertical Controls

Quickly change the vertical scale of any channel.

www.valuetronics.com

8. Push Knobs

All WaveAce knobs can be pushed for additional capabilities. Push the V/div knobs to toggle between fixed and variable gain. Push the T/div knob to enter zoom mode and push the position knobs to center the waveform on screen.

9. Local Language User Interface

The intuitive user interface is available in several different languages.

10. Front Panel Print Button

Saving or Printing screenshots requires only a single button press.

11. Backlit Menu Buttons

When using certain features like Cursors or Measurements the button remains lit for easy menu navigation.

12. Context Sensitive Help

Press any button or turn any knob while in help mode and a pop-up window displays the functionality of that control.

13. Auto Setup

Quickly configures the vertical, horizontal and trigger settings for the WaveAce. Choose to view the waveform as multi-cycle, singlecycle, rising or falling edge.

WAVEACE 1000 SPECIFICATIONS

	WaveAce 1001	WaveAce 1002	WaveAce 1012			
Vertical						
Bandwidth	40 MHz	60 MHz	100 MHz			
Rise Time	8.8 ns	5.8 ns	3.5 ns			
Input Channels		2				
Vertical Resolution		8-bits				
Vertical Sensitivity		2 mV/div – 10 V/div				
Bandwidth Limiting Filter		20 MHz				
Maximum Input Voltage		400 Vpk, CAT I				
Input Coupling		GND, DC 1 M Ω , AC 1 M Ω				
Input Impedance		1 MΩ 18 pF				
Acquisition						
Sampling Rate (Single Shot)		1 GS/s (interleaved),				
		500 MS/s (all channels)				
Sampling Rate (Equivalent Time)	25 GS/s	50 0	GS/s			
Peak Detect Period		10 ns				
Memory Length		1 Mpts/Ch				
Maximum Memory		2 Mpts				
Timebase Range	10.0 ns/div - 50 s/div	5.0 ns/div - 50 s/div	2.5 ns/div – 50 s/div			
Probes						
Standard Probes	10:1, 1:1	1 Switchable Passive Probe (one per o	channel)			
Triggering						
Triggers	Edge, Pu	Ilse Width, Video, Slope (Rise Time), A	Alternate			
Measure, Math and Wave R	lecorder					
Measure	Max, Mean, Min, Overshoot, Peak	Width, Cyclic RMS, + Duty Cycle, - E -Peak, Period, Phase, Preshoot, Rise d parameters for edge to edge timing	Time, RMS, Top, + Width, - Width			
Math		vide, FFT (up to 1 kpts with Rectangul				
	Blackman windows)					
Waveform Sequence Recorder	Record and	I playback a sequence of up to 2,500 v	waveforms			
Input/Output Interfaces						
USB	USB host port for flas	h drives, USB device port for connect	ing to PC and printers			
Physical						
	163 mm x 313 mm x 115.8 mm; 6.42" x 12.32" x 4.6"					
	163 mm		2" × 4.6"			
Dimensions (HWD)	163 mm	n x 313 mm x 115.8 mm; 6.42" x 12.3 2.78 kg; 6.10 lbs.	2" × 4.6"			
Dimensions (HWD) Weight	163 mm		2" x 4.6"			
Dimensions (HWD) Weight Power Requirements	100 -	2.78 kg; 6.10 lbs. 240 V (± 10%) at 50 / 60 / 400 Hz (±	5%).			
Dimensions (HWD) Weight	100 -	2.78 kg; 6.10 lbs.	5%).			
Dimensions (HWD) Weight Power Requirements	100 -	2.78 kg; 6.10 lbs. 240 V (± 10%) at 50 / 60 / 400 Hz (±	5%).			
Dimensions (HWD) Weight	100 -	2.78 kg; 6.10 lbs. 240 V (± 10%) at 50 / 60 / 400 Hz (±	5%).			

⁶ www.valuetronics.com

WAVEACE 2000 SPECIFICATIONS

	WaveAce 2002	WaveAce 2004	WaveAce 2012	WaveAce 2014	WaveAce 2022	WaveAce 2024	WaveAce 2032	WaveAce 2034
Vertical								
Bandwidth	70 MHz	70 MHz	100 MHz	100 MHz	200 MHz	200 MHz	300 MHz	300 MHz
Rise Time	5.0 ns	5.0 ns	3.5 ns	3.5 ns	1.75 ns	1.75 ns	1.2 ns	1.2 ns
Input Channels	2	4	2	4	2	4	2	4
Vertical Resolution				. 8-b			-	
Vertical Sensitivity								
Bandwidth Limiting Filter	2 mV/div–5 V/div 20 MHz							
Vaximum Input Voltage	400 Vpk, CAT I 400 Vpk, CAT I (1 MΩ), 5 V _{rms} (50 Ω)						(O, Q)	
Input Coupling	$\frac{400 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{400 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{400 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk, CATT}}{\text{GND, DC 1 M}\Omega, \text{ AC 1 M}\Omega} = \frac{100 \text{ Vpk}}{100 \text{ Vpk}} = 100$						Ω	
nput Impedance		1 MΩ					8 pF, 50 Ω	
			· • •·				- ,	
Acquisition								
Sampling Rate (Single Shot)				2 GS/s (in				
		1 GS/s (all channels)						
Sampling Rate (Equivalent Time)					GS/s			
Peak Detect Period					ns			
Memory Length					ots/Ch			
Maximum Memory	E O () ¹	EQ (1)			kpts		1.0	F0 (1)
limebase Range	5.0 ns/div	– 50 s/div		2.5 ns/div	– 50 s/div		1.0 ns -	50 s/div
Probes								
Standard Probes			10:1, 1:1 Sw	itchable Passi	ve Prohe lone	nor obannal)		
			10.1, 1.1 000	10110010 1 0331	ve i ione (olle	per channel)		
Triagering			10.1, 1.1 000			per channel)		
Triggers	Pagardar			Nidth, Video, S				
Triggers Measure, Math and Wave			Edge, Pulse \	Width, Video, S	Slope (Rise Tir	me), Alternate		
Triggers Measure, Math and Wave	Amplitud		Edge, Pulse V ase, Burst Wic	Width, Video, S Ith, Cyclic RM	Slope (Rise Tir S, + Duty Cyc	ne), Alternate le, - Duty Cycl	e, Fall Time, Fi	
Triggers Measure, Math and Wave	Amplitud	, Min, Oversh	Edge, Pulse N ase, Burst Wic oot, Peak-Pea	Width, Video, S Ith, Cyclic RM k, Period, Pha	Slope (Rise Tir S, + Duty Cyc se, Preshoot,	ne), Alternate le, - Duty Cycl Rise Time, RM	IS, Top, + Wid	
Triggers Veasure, Math and Wave Measure	Amplitud Max, Mear	n, Min, Oversh Plus 9	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for e	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure	IS, Top, + Wid ments	th, - Width.
Triggers Veasure, Math and Wave Measure	Amplitud Max, Mear	n, Min, Oversh Plus 9	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for en FFT (up to 1 k	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti spts with Rect	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure	IS, Top, + Wid	th, - Width.
Triggers Measure, Math and Wave Measure Math	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M	Edge, Pulse V ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide,	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for eu FFT (up to 1 k Blackman	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti spts with Rect windows	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H	IS, Top, + Wid ments Iann, Hamming	th, - Width.
Triggers Measure, Math and Wave Weasure Math Waveform Sequence Recorder	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for eu FFT (up to 1 k Blackman	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti spts with Rect windows	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H	IS, Top, + Wid ments Iann, Hamming	th, - Width.
Triggers Measure, Math and Wave Veasure Math Waveform Sequence Recorder Input/Output Interfaces	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequer	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H 500 waveforn	IS, Top, + Wid ements lann, Hammin ns	th, - Width.
Triggers Measure, Math and Wave Veasure Math Waveform Sequence Recorder Input/Output Interfaces JSB	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for en FFT (up to 1 k Blackman /back a sequen ves, USB devi	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H 500 waveform	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces USB	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for en FFT (up to 1 k Blackman /back a sequen ves, USB devi	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H 500 waveform	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces JSB _AN	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for en FFT (up to 1 k Blackman /back a sequen ves, USB devi	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H 500 waveform	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Vleasure, Math and Wave Vleasure Vlath Waveform Sequence Recorder Input/Output Interfaces JSB _AN Physical	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse Nase, Burst Widoot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequer ves, USB devi onnection to P	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti typts with Rect windows nce of up to 2 ce port for con C using Wave	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn necting to PC Studio softwar	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Vleasure, Math and Wave Vleasure Vlath Waveform Sequence Recorder Input/Output Interfaces JSB _AN Physical Dimensions (HWD)	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse Nase, Burst Widoot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for ea FFT (up to 1 k Blackman /back a sequel ves, USB devi nnnection to Po 50 mm x 124.1	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti ypts with Rect windows nce of up to 2 ce port for con C using Wave mm; 6.42" x	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn necting to PC Studio softwar	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Veasure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces JSB _AN Physical Dimensions (HWD) Weight	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse Nase, Burst Widoot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for ea FFT (up to 1 k Blackman /back a sequel ves, USB devi nnnection to Po 50 mm x 124.1	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti typts with Rect windows nce of up to 2 ce port for con C using Wave	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn necting to PC Studio softwar	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces USB LAN Physical Dimensions (HWD) Weight	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M R USB host pc	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv AN port for cc 163 mm x 36	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequel ves, USB devi nnection to Pr 30 mm x 124.1 3.33 kg;	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor C using Wave <u>mm; 6.42" x</u> 7.40 lbs.	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn ,500 waveforn necting to PC Studio softwar 14.17" x 4.89"	IS, Top, + Wid ements lann, Hammin ns C and printers	th, - Width.
Triggering Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces USB LAN Physical Dimensions (HWD) Weight Power Requirements	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M USB host pc L	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash drin AN port for co 163 mm x 36 100 - 240	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequel ves, USB devi nnection to Pr 30 mm x 124.1 3.33 kg; V (± 10%) at	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor C using Wave <u>mm; 6.42" x</u> 7.40 lbs.	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn ,500 waveforn necting to PC Studio softwar 14.17" x 4.89"	1S, Top, + Wid ments lann, Hamming ns <u>and printers</u> re	th, - Width.
Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces USB LAN Physical Dimensions (HWD) Weight	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M USB host pc L	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv AN port for cc 163 mm x 36	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequel ves, USB devi nnection to Pr 30 mm x 124.1 3.33 kg; V (± 10%) at	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor C using Wave <u>mm; 6.42" x</u> 7.40 lbs.	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn ,500 waveforn necting to PC Studio softwar 14.17" x 4.89"	1S, Top, + Wid ments lann, Hamming ns <u>and printers</u> re	th, - Width.
Triggers Vleasure, Math and Wave Vleasure Vlath Vaveform Sequence Recorder Input/Output Interfaces JSB _AN Physical Dimensions (HWD) Veight Power Requirements	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M USB host pc L	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash drin AN port for co 163 mm x 36 100 - 240	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequel ves, USB devi nnection to Pr 30 mm x 124.1 3.33 kg; V (± 10%) at	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti pts with Rect windows nce of up to 2 ce port for cor C using Wave <u>mm; 6.42" x</u> 7.40 lbs.	ne), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveforn ,500 waveforn necting to PC Studio softwar 14.17" x 4.89"	1S, Top, + Wid ments lann, Hamming ns <u>and printers</u> re	th, - Width.
Triggers Measure, Math and Wave Measure Math Waveform Sequence Recorder Input/Output Interfaces USB LAN Physical Dimensions (HWD) Weight	Amplitud Max, Mear	n, Min, Oversh Plus 9 d, Subtract, M USB host pc L	Edge, Pulse N ase, Burst Wic oot, Peak-Pea advanced par ultiply, Divide, ecord and play ort for flash driv AN port for cc 163 mm x 36 100 - 240 pmatic AC volt	Width, Video, S Ith, Cyclic RM k, Period, Pha ameters for er FFT (up to 1 k Blackman /back a sequel ves, USB devi nnection to Pr 30 mm x 124.1 3.33 kg; V (± 10%) at	Slope (Rise Tir S, + Duty Cyc se, Preshoot, dge to edge ti typts with Rect windows nce of up to 2 ce port for cor C using Wave mm; 6.42" x 7.40 lbs.	he), Alternate le, - Duty Cycl Rise Time, RM ming measure angular, Von H ,500 waveform 500 waveform necting to PC Studio softwar 14.17" x 4.89" 12 (± 5%). onsumption: 5	1S, Top, + Wid ments lann, Hamming ns <u>and printers</u> re	th, - Width.

ORDERING INFORMATION

Ordering Information

Product Description	Product Code
40 MHz, 500 MS/s, 2 Ch, 1 Mpts/Ch with 7" Color Display. 1 GS/s Interleaved, 1 M Ω Input	WaveAce 1001
60 MHz, 500 MS/s, 2 Ch, 1 Mpts/Ch with 7" Color Display. 1 GS/s Interleaved, 1 MΩ Input	WaveAce 1002
100 MHz, 500 MS/s, 2 Ch, 1 Mpts/Ch with 7" Color Display. 1 GS/s Interleaved, 1 M Ω Input	WaveAce 1012
70 MHz, 1 GS/s, 2 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 1 M Ω Input	WaveAce 2002
70 MHz, 1 GS/s, 4 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 1 M Ω Input	WaveAce 2004
100 MHz, 1 GS/s, 2 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 1 MΩ Input	WaveAce 2012
100 MHz, 1 GS/s, 4 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 1 MΩ Input	WaveAce 2014
200 MHz, 1 GS/s, 2 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 50/1 M Ω Input	WaveAce 2022
200 MHz, 1 GS/s, 4 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 50/1 M Ω Input	WaveAce 2024
300 MHz, 1 GS/s, 2 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 50/1 M Ω Input	WaveAce 2032
300 MHz, 1 GS/s, 4 Ch, 12 kpts/Ch with 7" Color Display. 24 kpts, 2 GS/s Interleaved, 50/1 M Ω Input	WaveAce 2034

Product Description

Product Code

Included with Standard Configuration
One Passive Probe per Channel
Multi-language User-interface and Help (English, French, German, Italian, Japanese, Korean, Russian, Simplified Chinese, Spanish, Traditional Chinese)
USB Cable for use with WaveStudio
Getting Started Manual
CE and Performance Certificate
3-year Warranty

Accessories

Soft Carrying Case for WaveAce Oscilloscopes

WA-SOFTCASE

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year.

This warranty includes:

- No charge for return shipping
- Long-term 7-year support
- Upgrade to latest software at no charge

For more information, please contact:

1-800-5-LeCroyLocal sales offices are located throughout the world.teledynelecroy.comVisit our website to find the most convenient location.

© 2012 by Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.

www.valuetronics.com

TELEDYNE LECROY

Everywhereyoulook"